Machine Learning with Python Classroom Live Raleigh, NC August 24, 2020

Price: $1,900

This course runs for a duration of 3 days.

The class will run daily from 8:30 am EST to 4:30 pm EST.

Class Location: Raleigh - Raleigh, NC.

Enroll today to reserve your spot!

Space is limited. Enroll today.

Enroll Now

Description

This hands-on machine learning course advances your data analysis skills into the realm of real-world data science. If you have a working familiarity with Python, our three-day class equips you to go back to work with real-world predictive modeling and basic machine learning techniques. Led by expert data scientists, you will work with Python to lay your data science foundation and learn techniques that allow you to leverage your data in sophisticated, powerful new ways.

In this Machine Learning Python Course, You Will Learn How to:

  • Address business needs and identifying new business opportunities using machine learning
  • Work with missing values, outliners and duplicate records with Python
  • Implement hypothesis testing for model evaluation analysis
  • Utilize both supervised and unsupervised machine learning
  • Build a linear regression model with Python
  • Build a classification model with Python
  • Use the K-means clustering method for cluster analysis with Python

Who Should Attend

Intermediate level data analysts interested in expanding their data mining processes. We emphasize Data Foundation and Machine Learning concepts. All exercises are performed using Python.

Course Overview

Part 1: Overview of Data Science

  1. Data Science as a quantitative discipline
    • How to define Data Science scopes
    • The many faces of Data Science: Data Mining, Data Analysis, Data Analytics, Machine Learning, Predictive Modeling, Statistical Learning, Mathematical Modeling. What are these all about?
    • Data Mining as a data exploration process
    • Machine Learning: supervised vs. unsupervised
    • Machine Learning vs. Predictive Analytics
    • Big Data Analytics: what is it and why it's important
  2. Overview of a Data Mining process cycle
    • Understanding business needs and identifying new business opportunities
    • Formulating a business problem and associated requirements
    • Defining key quantitative metrics to measure success and evaluating business benefits
    • Translating business requirements into technical requirements and documentation
    • Formulating data models based on business and technical requirements
    • Identifying a set of quantitative models based on technical requirements and metrics of success
    • Running the models and evaluating results
    • Selecting the best model
    • Deploying the model

Part 2: The Data Foundation

  1. Data sources
  2. Types of data
    • Structured vs. unstructured data
    • Static data vs. real-time data
    • Types of data attributes: numerical vs. categorical
    • Role of time factor and time trends in data analysis
  3. Working with missing values
    • Main causes of missing data
    • Understanding the importance of missing information
    • Types of missing information
    • Restoring missing values
    • Imputing missing values and selecting imputation techniques
    • Understanding and evaluating potential consequences of manipulating records with missing values
  4. Working with outliers
    • Defining quantitative criteria for outlier detection in 1D cases
    • Understanding role of outliers in model building
    • Deciding on outlier removal
    • Defining outlier detection metrics in multi-dimensional space
  5. Working with duplicate records
    • Defining duplicates
    • Understanding sources of duplicates
    • Deciding on duplicate removal

Part 3: Sampling and Hypothesis Testing

  1. Why sampling may be important for Machine Learning
  2. Sampling techniques and sample bias
  3. Statistical hypothesis
  4. Z-score, t-score and F statistic
  5. P-values
  6. Implementation of hypothesis testing for model evaluation analysis

Part 4: Machine Learning Fundamentals

  1. What is Machine Learning?
  2. Supervised vs. unsupervised learning
  3. Overview of supervised Machine Learning
    • Regression models
    • Classification models
  4. Overview of unsupervised Machine Learning
    • Clustering methods
    • Principal component analysis and dimension reduction
    • Association rules
  5. Overview of major steps in building and testing quantitative models
    • Criteria for model selection
    • How to prepare a training set
    • Criteria for selecting model attributes/predictors
    • Working with collinear variables
    • Addressing imbalance problem
    • Dealing with over-fitting; bias-variance tradeoff
    • Validation and cross-validation

Part 5: Building a Linear Regression Model with Python

  1. Univariate regression vs. multiple regression
  2. Mathematical foundation of linear regression overview: least square method vs. maximum likelihood method
  3. Model assumptions
  4. Working with continuous attributes
  5. Dealing with collinear variable
  6. Model subset selection:
    • Forward stepwise selection
    • Backward selection
    • Shrinkage methods: ridge regression and Lasso
    • Dimension reduction
    • Information criteria
  7. Automating model selection procedure
  8. Model parameter evaluation, R squared vs. adjusted R squared
  9. Validating the model
  10. Working with categorical variables
  11. Considering input variable interactions

Part 6: Example of building a Classification Model with Python

  1. Dealing with imbalanced training sets
  2. Understanding confusion matrix
  3. Evaluating binary classifiers using ROC / AUC

Part 7: Example of Cluster Analysis with Python

  1. Overview of cluster analysis mathematical foundation
  2. K-means clustering method
    • Algorithm overview
    • Convergence criteria
    • How to determine the number of clusters

Part 8: Dimension Reduction techniques with Python

  1. What is dimension reduction?
  2. The practical goals of dimension reduction implementation
  3. Principal component analysis vs. singular value decomposition
  4. How many components to choose

Part 9: Class Conclusion

  1. What was not covered in the class

  2. Big Data Analytics – the future of machine learning: main tools and concepts

Prerequisites

This machine learning with Python course is for individuals intermediate data analysis skills and basic knowledge of descriptive statistics. Any experience with Python is also beneficial. 

Technical requirements: Installed Python and some Python packages. 

Other Available Dates for this Course

Virtual Classroom Live
December 16, 2019

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
January 27, 2020

San Francisco, CA
$1,900.00
3 days    8:30 am PST - 4:30 pm PST
view class details and enroll
Virtual Classroom Live
January 27, 2020

$1,900.00
3 days    8:30 am PST - 4:30 pm PST
view class details and enroll
Classroom Live
February 24, 2020

Seattle, WA
$1,900.00
3 days    8:30 am PST - 4:30 pm PST
view class details and enroll
Virtual Classroom Live
February 24, 2020

$1,900.00
3 days    8:30 am PST - 4:30 pm PST
view class details and enroll
Virtual Classroom Live
March 30, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
March 30, 2020

Washington, DC
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
April 27, 2020

Austin, TX
$1,900.00
3 days    8:30 am CST - 4:30 pm CST
view class details and enroll
Virtual Classroom Live
April 27, 2020

$1,900.00
3 days    8:30 am CST - 4:30 pm CST
view class details and enroll
Virtual Classroom Live
May 26, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
May 26, 2020

Atlanta, GA
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
June 29, 2020

$1,900.00
3 days    8:30 am CST - 4:30 pm CST
view class details and enroll
Classroom Live
June 29, 2020

Chicago, IL
$1,900.00
3 days    8:30 am CST - 4:30 pm CST
view class details and enroll
Virtual Classroom Live
July 27, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
July 27, 2020

New York, NY
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
August 24, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
September 28, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
September 28, 2020

Philadelphia, PA
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
October 26, 2020

Houston, TX
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
October 26, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
November 30, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
November 30, 2020

Detroit, MI
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Virtual Classroom Live
December 14, 2020

$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll
Classroom Live
December 14, 2020

Boston, MA
$1,900.00
3 days    8:30 am EST - 4:30 pm EST
view class details and enroll